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The problem of a detonation in a two-phase reactive medium is fully solved using the flux 
corrected transport (FCT) algorithm. This method is used to solve nonlinear hyperbolic 
equations of two-phase flow and was chosen for its ability to suppress numerical oscillations 
and to describe well the complex shock waves. The solution of the problem is described. The 
details of a test case based on the analytical solution of a strong adiabatic point explosion are 
given. 

I. INTRODUCTION 

The two-phase medium detonation is a problem that gained interest from the 
middle sixties. Two aspects were investigated: the detonation of dust clouds (mainly 
coal and light metals) with the purpose of investigating accidental explosions, and 
detonation of fuel spray clouds, mainly for military purposes. 

Although many of the publications were devoted to experimental studies [l-6], 
some tried a theoretical approach to the problem. One of the first theoretical studies 
of detonation in a two-phase medium was that of Cherepanov [7], who used an 
approximation model assuming that behind the shock front a certain sequence of 
internal explosion occurs that accelerates the shock wave. According to his theory, 
the minimal detonation velocity that can be obtained in a two-phase medium will be 
D min = DJ\/Z’ The experimental evidence showed this to be wrong [3, 41. 

Other investigations were devoted to steady-state detonation propagation in two- 
phase media and the influence of the droplets shattering parameters on it [8, 91. 

But the steady-state detonation models do not express the dynamic mutual depen- 
dence between the droplets or particles shattering and the shock wave’s velocity. 
Also, these models do not describe the dynamics of the transition from the blast wave 
of the igniting source to the stable detonation. 

The numerical solution of the whole dynamic problem of ignition and propagation 
of a detonation wave in a two-phase reactive medium is a complex problem because 
any numerical oscillation could be amplified in the combustible medium. The few 
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known attempts to solve the dynamic problem of a two-phase detonation [ 10, 11, 351 
were not very successful in describing the structure of the detonation wave and the 
numerical results of these investigations were not compared with experimental data. 

In this work the dynamics of the two-phase detonation problem is solved. The 
numerical algorithm was based on the flux-corrected transport (FCT) method [ 121. It 
allowed the minimization of the nonphysical oscillations and the achievement of the 
right description of shock waves with complex structures. 

The algorithm was checked on a strictly nonlinear test problem. 
The computer parameters obtained with this program provide explanations to the 

following questions: 

(a) the dynamics of transition from an exploding source to the detonation of 
the two-phase medium; 

(b) it describes the shape of the detonation waves in the two-phase medium; 

(c) it describes the mechanism of the reinforcement of the shock wave in the 
two-phase medium and its transformation to a detonation wave. 

The mathematical model was used to explain and compare experimental data with 
solid particles [ 131 and with fuel droplets [ 14, 151, and the correlation with the 
experiments was good. 

II. FORMULATION OF THE PROBLEM 

Energy is abruptly liberated in a two-phase medium where solid combustible 
particles or fuel droplets are evenly spread in an oxidizing gas. The energy is 
liberated in a finite volume and its source may be a concentrated laser beam, an elec- 
trical discharge, or a solid explosive. 

The energy is immediately transferred to the medium in the closest vicinity to the 
high-energy volume described above (Brode [ 161; Eidelman and Burcat [ 141). A very 
strong shock wave is formed and it starts traveling from the high-energy volume 
outward in the two-phase medium. At the beginning, the pressure on the strong shock 
wave is higher by a few orders of magnitude than the pressure of the surrounding 
medium. Therefore the counterpressure to the strong shock can be neglected. The 
strong shock wave ignites the combustible medium and the chemical energy which 
starts being liberated from the two-pase medium and influences the gasdynamic 
parameters of the strong shock. The occurrence was the subject of an earlier study of 
ours through a self-similar model [ 171 and this solution was used in the present 
investigation. 

When the pressure on the shock wave drops to two orders of magnitude higher 
than the pressure of the two-phase medium, the shock’s propagation becomes 
dependent only on the dynamics of particles or droplets shattering and on the ther- 
modynamic parameters of their burning. 
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Three fates befall the shock wave from now on: 

(a) The shock wave may decay rapidly because it is unable to ignite the 
medium. 

(b) The shock wave may ignite the two-phase medium but the flame front may 
not supply enough energy to compensate the dissipative losses caused by the 
expanding strong shock. Thus the shock wave will decay and the two-phase cloud 
will burn relatively slowly. 

(c) The strong shock ignites the two-phase medium and the medium supplies 
enough energy to compensate for the dissipative losses of the shock front. Thus the 
shock wave becomes a detonation wave traveling at constant (or quasi-constant) 
velocity through the two-phase medium. 

1. The Basic Assumptions 

To formulate our problem, a few basic assumptions have to’be made in order to 
describe the travel of the shock wave through the two-phase medium that contains 
solid prticles or liquid droplets in a gas: 

(a) The agglomeration of particles or droplets behaves as a continuous 
medium formed from noninteracting spheres whose size is equal to the average size of 
the particles or droplets. 

(b) The volume occupied by the particles or droplets is negligible compared to 
the gas volume. 

(c) The chemical reactions occur only in the gas phase. 

(d) The temperature gradient in the droplets or particles is neglected. 

(e) The gas phase behaves as an ideal gas. 

The justification for these assumptions can be found in many articles [8, 18-211. 
The velocities and temperatures of the two phases can be different and the phase 

change may occur without reaching an equilibrium. Taking assumption (c) into 
consideration, it was also accepted, according to Borisov [8], Vranos [22], and 
Stambuleanu [23], that the burning rate of particles or droplets is determined by the 
rate of their evaporization. Thus chemical kinetics can be omitted. 

2. The Conservation Equations 

The conservation equations are based on assumptions (a) to (e) in the previous 
section, and according to (b), they are divided into two separate sets: conservation 
equations for the gas, and separately for the liquid phase. The conservation equations 
for the two phases are interconnected through their right-hand sides (Antonov et al 
I 101). 

The conservation equations for the gas phase for a unidimensional case with 
spherical symmetry using Eulerian coordinates are written according to Nigmatulin 
[ 191 and Luikov [20], in the following way: 
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atPI= -fa,(‘2hP~) + 6P2 

conservation of mass, 

46-3 VI) = - f arVpl v:) - a,p - P,M + dp2 v2 

conservation of momentum, 

--fa,(r’PY,)-p,Y,M+dp,~+p,6Q 

conservation of energy 
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0) 

(2) 

(3) 

In defining the right-hand side of Eq. (3) it was assumed that the temperature of 
the droplets during the shattering or vaporization does not change. 

The conservation equations for the liquid phase are according to Wallis [24] and 
Luikov [ 201, 

alp2 = - + a,(&, v2) - a~, 

conservation of mass, (4) 

4ti2 v2) = - + a,(&, fi:) + P,M - fip, v2 

conservation of momentum. (5) 

Since the internal energy of the droplets is negligible compared to the gas phase, the 
equation for the conservation of the number of droplets will be written 

a,N = - -$ a,(r2Nv2). (6) 

The average density of the fuel can be expressed through the real density pi, the 
radius 1, and the amount of drops or particles in the unit volume, N: 

p2 = $r13Np;. (7) 

Therefore, Eq. (4) and (5) will be written after replacement of p2 by its expression 
through 1, N, and pi in the following form: 

a,(lN) = - $ a,(rW,N) - y, (4’) 

a,(NV,) = - f a,(r2NG) + NM. (5’) 
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These equations are connected through their right-hand sides to Eqs. (l)-(3), which 
describe the motion of the gas phase. The two sets of conservation equations are not 
yet fully determined because 6, the rate of shattering of the particles, and M, the drag 
function, have not yet been determined. 

3. The Rate of Shattering of the Particles or Droplets 6 

Two main models of shattering of the particles or droplets after the shock wave 
were used: 

(a) the aerodynamic shattering model proposed by Engel [25], 

(b) the fast evaporization model which was obtained from the energy balance 
of particles or droplets in the gas flow. 

The model of aerodynamic shattering defines the rate of droplet shattering 
according to Engel [25]: 

The evaporization model was obtained after the following assumptions were made: 

(a) The drop evaporates evenly over all its surface. 

(b) The temperature of the drop does not change during the evaporization. 

(c) All the heat which the drop is receiving from the hot gas behind the shock 
front is spent on their evaporization. 

The evaporization defines the shattering rate according to Borisov [8] and 
Eidelman [26], 

dl 3~ Nu(T, - T2) 
t=- 7rlpiL * 

The Nusselt number was calculated from the equation 

Nu = 2 + 0.6 Pro.33 Re”.5. 

Summarizing the effects of evaporization and aerodynamic shattering the rate of 
droplet shattering 6 could be found from Eqs. (4’), (8), and (9) [26]: 

6 = gK WT, - T2) 
7d2p: L 

+ 3 pp)“” ($ (V, - v2y21-3/2. (10) 
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4. Calculation of the Drag Function M 

This was determined according to Borisov et al. [8], 

M=++Y,-Y,I(Y,-Q, 
2 

(11) 

where C, is dependent on the Reynolds number as follows: 

C, = 27 Ree0aa4, Re < 80, 

= 0.27 Re”.21, 80 < Re < 104, 

= 2, Re > 10. 

5. The Nondimensional form of the Conservation Equations 

In order to express our equations in a nondimensional form, dimensionless 
variables were introduced (where constant coefftcients have the index zero): 

Pl =Pogl; v, = v&f* ; P, = P,h,; r = r,X, t = z,r; (12) 

r0 is the radius of the initial volume where the energy was 
released, 

r. = (JI~/E)~~ ri” is the time of the igniting explosion, 

E is the energy related to the igniting explosion energy E, 
through a dimensionless constant (E, = aE), 

a is a dimensionless coeffkient (Burcat et al. [ 17]), 

PO is the pressure of the undisturbed media. 

p. and V, are introduced by the equations 

Voro 1. -= ) PO - 1. 
r0 POG 

(13) 

After a few transformations the nondimensional equations are obtained: 

(a) for the gas phase 

8, g, = - +a(x2&fi) + 2 h2 

conservation of mass, (14) 

w-l 8,) = - ~4(x2&f:) - WI - + @2M + 6~2 v2> 

consLvLion of momentum, (15) 
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a, 
( 
AL-$ 
Y-1 ) 

=-L& p 
[ ( 

&f: JL+-2 f, 
Y-1 )I 

-+%w2wl)-~ (v,P244-&32~-P26p) 

conservation of energy; 

(b) for the liquid phase the nondimensional parameters will be defined: 

I = r,X, t=r, * t; 1= 1,1; N= N,n; v,= Vo*f2. 

After some transformations the following is obtained: 

a,(k) = - + 8,(X2u2 n) - + conservation of mass, 

a,(nf) = - + 8,(X”qf:) + -$ Mn conservation of momentum, 
2 0 

a, n = - + L9,(X2qf2) conservation of the number 
of particles or droplets 

(16) 

(17) 

(18) 

(1% 

(20) 

The six partial differential equations [( 14), (15), (16), (18), (19), and (20)] form a 
closed set of equations. 

6. The Boundary Conditibns 

The initial distribution of gasdynamic parameters behind the shock wave was 
calculated using the solution of the self-similar problem described elsewhere 
(Eidelman et al. [27]; Burcat et al. [ 171). Th us at t  = to in the region bordered by to, 
the following parametric conditions are found: 

P=P(r,to), r<ro, p1 =p,(r, toI, r C ro, V, = V,(r, to), r < ro, 
(21) 

=p 
3 r>r,; =p:, r>r,; = 0, r> ro. 

The parameters for the liquid phase will be 

l=O, r<ro, N= 0, r<ro, 

= l’, r > ro; =N’, r>r,; 
v, = 0. (22) 

The nondimensional boundary conditions for Eqs. (14)-(16) (the gas phase) will be 

h, = h,(X, 11, X< 1, g, = g&K 11, x< 1, f, =fi(x, 11, x< 1, 
(23) 

= 1, X>l; =l, x> 1; = 0, x> 1. 
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and for the liquid phase 
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1=0, xg1, n = 0, XQ 1, 

=l, X>l; =l, x> 1; 
fi = 0. (24) 

From the mathematical point of view, our problem is a Cauchy problem for a set of 
hyperbolic partial differential equations. 

III. THE NUMERICAL SOLUTION 

1. The Solution Method 

The mathematical model of the problem consists of six nonlinear hyperbolic 
equations (14)-(20) with initial conditions (23) and (24) on the igniting shock wave. 
When the strong shock wave propagates through a two-phase reactive medium, the 
inhomogeneous combustion behind the wave could form additional discontinuities 
and change the pattern of the shock wave. In this case a special treatment of the 
discontinuities becomes impractical because they are either too difficult to be coded 
or too expensive to compute. The artificial viscosity methods should be used with 
great caution. In our case the usual criteria for choosing the kind and quantity of the 
artificial viscosity are not practical because the shape of the shock is unknown 
beforehand, and the oscillations could have a physical meaning. On the other hand, 
numerical oscillations should be suppressed because they could be amplified in the 
combustible medium and that can change the physical picture of the solution 
significantly. 

Therefore, for the numerical solution of our problem there was a special need for a 
numerical method where the choice of the optimal artificial viscosity is carried out 
along with a special technique of suppressing the numerical oscillation only. 

For these reasons it was decided to use the flux corrected transport (FCT) method, 
developed by Boris and Book [ 12, 281. This method was not used before for two- 
phase flow problems, but it satisfies all the above conditions, and it seems to be the 
most convenient method for our problem. The later version of the algorithm [28] was 
used. 

Finally it should be mentioned that the comparative studies of Sod [29] and 
Srinivas [30] on the FCT algorithm showed that the algorithm is especially good for 
describing complex shock waves and the diffusion of the solution is the lowest among 
the known algorithms. 

2. The Numerical Integration and the Computer Program 

Figure 1 is a flow chart that shows the organization of the computer program for 
solving Eqs. (14)-( 16) and (18)-(20) by the FCT method. 

After defining the basic parameters of the problem; i.e., the igniting energy, the 
physical and thermodynamic parameters of the gas phase and the liquid or solid 
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FIG. 1. Flow chart of the numerical integration of Eqs. (14)-(16) and (18~(20). 

phase, the parameters that define the calculation procedure, the problem is started 
with the solution of a self-similar problem. This solution was described in an earlier 
publication [ 171. This solution is good only if the pressure on the shock wave is 
greater by at least three orders of magnitude than the counter pressure. A restricting 
factor for using this solution is that the additional energy released by the two-phase 
medium be less than 25 96 of the igniting energy. However, if the area is so small that 
the additional energy released by the media is less than 5%, the adiabatic solution of 
a strong point explosion as described by Sedov [ 3 1 ] is taken. 

It is also possible to determine beforehand the size of the region where the self- 
similar solution is to be considered. Alternatively, if the igniting energy is caused by 
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a solid explosive charge another subroutine is called and it calculates the initial 
conditions from Eqs. (25~(30), h w  ere the solid explosive is assumed to expand 
according to the isentrope 

P=Apk 

and the other parameters are described as follows: 

(25) 

p&-, to) = (a/j/z)~(k-‘), (27) 

P,(c to) = AP:, (28) 

(29) 
and 

(30) 

This equation defines the parameters in the region D > r/t > D/2, while in the region 
0 < r/t < D/2 the parameters are 

v, = 0; a = const = D/2. 

After calculating the initial conditions, the program defines the right-hand side of 
Eqs. (14~(16) and begins the time loop of the numerical integration. The order of 
calculations could be followed on the flow chart (Fig. 1). 

After the calculations of one full step for Eqs. (14)-( 16) and (18)-(20), the time 
step for the next integration loop is calculated. The FCT method allows integration 
with the Courant number (Cu) until Cu = 0.5, but it was found that the best value for 
our calculations is Cu = 0.48. 

The time step AT was calculated according to 

At = 0.48 . Ax 
IDl+a * 

IV. THE TEST OF THE NUMERICAL ALGORITHM 

A theoretical check of the convergence and the precision of the numerical 
algorithms for our mathematical model is impossible because of their nonlinearity. In 
this case, linear approximations are usually considered. The check of the FCT 
method for a linear hyperbolic equation was done by Boris and Book [ 12 1. In our 
case where the equations are strictly nonlinear, it is very hard to obtain conclusions 
from this check. 
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In these circumstances it was decided to check the FCT method using a test 
problem with a strong nonlinearity. The test case chosen was the strong adiabatic 
point explosion whose analytical solution was presented by Sedov [3 1 ] in 1946. This 
test case is more severe in its requirements than our problem because the gradients of 
the shock wave are larger in this problem than in a two-phase case where the shock 
wave is broader and more diffused [ 17, 331 than in Sedov’s solution. 

The equations solved for the adiabatic explosion as given by Sedov are 
simplification of our Eqs. (l)-(3): 

conservation of mass, (31) 

conservation of momentum, (32) 

conservation of energy. (33) 

The boundary conditions will be given by Eq. (21), while the functions determining 
the parameters are taken directly from Sedov’s solution: 

P = P(to, t); PI =/4(b 9; v, = I+,, r). 

The initial parameters of the explosion and the medium are 

E,= 10’5; r. = 0.2 m; p, = 1.3 kg/m3; y= 1.4; P, = 0.1 N/m2. 

In Sedov’s original problem the counterpressure was zero; but in our case we had to 
give it some positive value for computational reasons. We decided to define it as 
Pi = 0.1 N/m*, i.e., six orders of magnitude lower than the atmospheric pressure. 

Figure 2 presents the pressure calculations for the analytical result (continuous 
lines) versus the numerical solutions with different grid densities (broken lines). 

Comparison of the analytical and numerical solutions show convergence of the 
numerical calculation to the analytical result when the density of the grid changes 
from & = 0.01 to dh = 0.005. As will be shown in Fig. 4, refining the grid results in 
close agreement between the analytical and numerical solution curves. The Courant 
number for the numerical solution used was Cu = 0.48. 

Defining the phase error as Ph = (V,, - Vt,,)/Vt,,, where Vth is the theoretical 
velocity of the shock wave and V,, the velocity of the shock wave obtained by the 
numerical solution of the test problem, Ph = 0.052 for Ah = 0.01 and Ph = 0.019 for 
Ah = 0.005 was obtained. The average amplitude error in both cases was less 
than 3%. 

Figure 3 shows the pressure versus the shock’s radius at two different time steps 
(l= 3.93 x 10P4 set and c = 12 x 1O-4 set) as a function of different Courant 



NONSTEADY BLAST WAVE PROPAGATION 467 

- ANALYTICAL SOLUTION 

--- SOLUllON WITH Ahz0.01 

SOLUTION WITH Ah.O.@X 

(or0596 lCCs~*c / 
16 

0 0.2 04 0.6 06 
r(m) 

FIG. 2. Pressure vs radius. Comparison between analytical solution and the numerical solutions on 
different grid mesh (a -P x 10S6 N/m*). 

+ ANALYTICAL 

,C”.O ‘8 - ,,mc 1=293.10& 

SOLUTION \ 
I’ ,,cu=o 24 

--- ,mc ,;I2 10 ‘see 

\\ 

~‘;C.;OO,, 

c ;r; ;. ljll ;2 ;j;:;Jy?j , 
lb 16 

r(m) 
16 

FIG. 3. Pressure vs radius. Comparison between analytical solution and the numerical solutions on 
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FIG. 4. Pressure and velocity vs radius. Comparison between analytical and numerical solution on a 
grid with Ah = 0.0025 m and Cu = 0.48. 
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numbers for the numerical solution. The density of the grid was fixed (dh = 0.005 m 
for each numerical solution). The best approach to the analytical solution was 
obtained when Cu = 0.48. This is very close to the maximal Courant number which 
the FCT method allows (Cu,,, = 0.5). 

Figure 4 presents the pressure and the mass velocity for the analytical and 
numerical solutions of the test problem. For the numerical solution, the grid with 
Ah = 0.0025 m was used. 

The explosion parameters were E, = 1.25 x lo6 J and r,, = 0.1 m. In this case the 
phase error was -1% and the amplitude error was -2%. However, this grid size is 
very expensive in computer time (~2 min for the propagation of one unidimensional 
radius on an IBM 370/168 computer but only 16 set on the Amdahl 470 V/6 
computer at the University of Michigan). 

V. DISCUSSION 

The calculation of the test problem and its comparison with the analytical solution 
showed that the algorithm based on the FCT method had a low error on the phase 
and amplitude when calculated with a Courant number of Cu = 0.48 and 
Ah =0.005 m. 

It was shown in Fig. 3 that a decrease in the Courant number from the optimal 
value (Cu = 0.48) causes the increase of the phase error. Milinazzo et al. [32] have 
recently compared (Fig. 7) an exact and a numerical solution of a strong blast wave 
propagation using the same numerical method (FCT). They obtained a phase error of 
-30% probably because their Courant number was much smaller than the optimal 
value. 

As was already mentioned, the test problem is a more severe challenge than the full 
problem in the two-phase medium because the liberation of energy from the two- 
phase medium broadens the shock wave [ 17, 331, and the nongaseous phase causes a 
certain smoothening to the shock wave and suppresses oscillations. So in the test 
problem the gradients were steeper and thus the convergence was harder to achieve. 
Therefore the error in the full problem should be lower than that in the test problem. 

However, when calculating the full two-phase problem, it is very important to 
adapt the grid density to the size of the particles or droplets. If the droplets or 
particles shatter on less than five grid points, their shattering is calculated very 
roughly, and that can change the picture in the shock front region. It was found that 
in order to get a good representation of the particles or droplets behavior, the 
shattering process must be represented on a minimum of 10 grid points. 

The solutions of the full problem of the shock wave propagation in a reactive two- 
phase medium have been published [13-151, and the reliability of the numerical 
solution was pointed out in detail. 

Finally, an illustration of the capability of the computational code is given in 
Fig. 5. Here the results of the calculation of the wave travelling in the two-phase 
medium is presented. The graphs of the pressure velocity and density vs the radius of 
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FIG. 5. The pressure, velocity and density of the gas vs the radius for a kerosene-air mixture. 
) = 0.15. E, = 1.25 x lo6 J. r,, = 0.05 m. Ah = 0.0025 m. a -P x 0.42 x 10m6 N/m*; b - V x 
0.67 x lo-’ m/set. 

the shock wave are presented one on top of the other. Each of the graphs belongs to a 
specific radius of the shock wave, and the graphs for the same radius (or alter- 
natively, time) are located one below the other. 

The two-phase medium consists of Kerosene droplets dispersed in air. The 
equivalence ratio taken is 4 = 0.75, the initial temperature is 298 K, and the pressure 
1 atm. The igniting source energy is E, = 1.25 X 10” J and the radius of the igniting 
source is r,, = 0.05 m. The computational grid density was dh = 0.0025 m. The other 
parameters for kerosene were the droplet radius I’= 0.75 x lop4 m, the heat of 
evaporation L = 1.9 X lo5 J/kg, the density pi = 745 kg/m3, the viscosity coefficient 
,u2 = 20.6 x lo4 k g set m and the boiling temperature for kerosene was taken as / 
450 K. The air parameters are of = 1.3 kg/m3, p1 = 0.21 X lo4 kg/set . m, and the 
gas heat transfer coefficient ic = 0.1 W/m OC. 

In the case presented there is a direct transition from the explosion to detonation 
and the velocity of the shock wave decays to the detonation velocity D = 1250 m/set. 
The constant velocity is attained at r > 0.65 m. At this location P = 17 atm and 
p = 5.8 kg/m3. 

Because the kerosene droplets are relatively small they burn in the 6-cm region 
behind the shock front, and the pressure and the mass velocity of the gas decrease 
sharply in the very short region behind the shock front. The shock front in this case is 
smeared on three computational grid points. 

This example shows the capability of the code to describe the very sharp shock 
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waves of the full problem without significant oscillations. It was also shown [ 141 that 
comparison of the experimental data available for kerosene-air mixtures with our 
computed results are in very good agreement. 

Using the numerical solution of the mathematical model we studied in our previous 
publications different aspects of the two-phase detonation [ 13-15, 341. 

Summarizing the achievements with the dscribed program reveals the following 
points: calculation of the full history of the explosion parameters in the two-phase 
medium can reconstruct the fate of the explosion as a function of the amount of 
energy released, as well as the volume where the energy was released [14]. Thus, if 
the physical and chemical parameters of the mixture are not changed, the amount of 
energy will define which of the three fates mentioned in Section II will happen. But it 
was also shown that within certain limits it is better to release the energy in a larger 
volum rather than a smaller one. 

It was found that the transition to a stable detonation wave occurs at a certain 
distance from the igniting explosion (the length of the transition zone depends on the 
energy and volume of the igniting source) and from this distance on the detonation 
parameters depend only on the physico-chemical properties of the medium and not on 
the source’s exploding strength. 

In a second publication [ 151, the influence of the droplet size of the fuel on the 
detonation wave structure and on wave parameters (pressure, velocity, and density) 
was investigated. 

It was found that the detonation velocity is inversely proportional to the width of 
the reaction zone behind the shock front. 

The propagation of the shock wave produced by the detonation of a finite fuel 
oxygen cloud, in air, was calculated. 

In a third publication [34], the machanism of the shock wave reinforcement was 
studied, and by using fine grids, the physical oscillations of the detonation process 
were identified and their propagation mechanism studied. 

Thus the FCT method has been known to be very helpful in determining and 
analyzing detailed processes and effects during the detonation of two-phase media. 
The method was found to be very successful up to now for liquid fuel two-phase 
clouds and work is in progress [ 131 for its adaptation for solid particle aerosols as 
well. 

APPENDIX: NOMENCLATURE 

A 
a 

C 

CD 

cu 

D 

a, 

coefficient (see Eq. (29)) 
sound velocity in the two phase medium 
sound velocity in the solid explosive 
drag coefficient 
Courant number 
detonation wave velocity 
partial derivative by time 
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3, 
EO 
f” 
2 
h 
k 
I 
L 
M 

N 

Elr” 
P 
Pr 
Q 
r. 
r 
Re 
t 
T 
V 
X 
a 

ii 

Subscripts 

Det 
0 
1 
2 

partial derivative by radius 
energy of the igniting source 
energy related to E, through the equation E = E,/a 
dimensionless velocity (see Eq. (12)) 
dimensionless density (see Eq. (12)) 
grid density 
dimensionless pressure (see Eq. (12)) 
isentropic coefficient for solid explosive detonation products 
average radius of the droplet 
heat of evaporation 
drag function related to the exchange of momentum between com- 
ponents 
number of droplets per unit volume 
dimensionless number of droplets per unit volume 
Nusselt number 
pressure 
Prandtl number 
the thermal effect of the chemical reaction per unit mass of the fuel 
initial radius of the igniting source 
space variable 
Reynolds number 
time 
temperature 
velocity 
dimensionless radius (see Eq. (12)) 
dimensionless constant 
effective isentropic exponent of the gas 
variable proportional to the rate of size reduction of the droplet (Eq. 
(10)) 
dimensionless radius (see Eq. (12)) 
dynamic viscosity 
equivalence ratio 
average density of the component 
heat conduction coefficient of the gas 
dimensionless time (see Eq. (12)) 

variables referring to the detonation wave 
variables referring to the front of the igniting source 
variables referring to the dispersing gas 
variables referring to the droplets 

Superscript 

initial value 
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